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Liquid suspensions of cotton callus tissue from a NaC1- 
sensitive cell line and a NaCl-tolerant cell line were 
subjected to the following treatments: (a) 0 and 150 mM 
NaCI, respectively (controls); (b) 75 and 250 mM NaCI, 
respectively; (c) 100ngm1-1 a-amanitin; or (d) pre- 
treatment for 2 h with 100 ng m1-1 a-amanitin followed 
by the respective NaCl treatments. The callus tissue was 
harvested at 0, 0.5, 1, 2, 4, and 8 h and analyzed for 
antioxidant enzyme activity. In the NaCl-tolerant 
callus, the 250 mM NaC1 treatment resulted in transient 
2- to 4-fold increases above the control levels in the 
activities of ascorbate peroxidase, catalase, glutathione 
reductase, and peroxidase within I h after treatment, 
while superoxide dismutase activity increased 4-fold 
within 4 h. This rapid increase suggests that the up- 
regulation of antioxidant capacity is an early response 
to NaC1 stress and perhaps provides protection against 
oxidative damage until other acclimating mechanisms 
can be invoked. In the control callus, peroxidase activ- 
ity remained unchanged, and significant increases in 
the other enzymes were not observed until 8h  after 
treatment with 75raM NaCI. Pre-treatment with 
a-amanitin prior to the NaCI treatment completely 
inhibited the NaCl-induced increase in the activities of 
all five enzymes in both cell lines. This data supports the 
conclusion that the NaCl-induced up-regulation of 

antioxidant enzyme activity in cotton callus tissue is 
transcriptionally regulated, proceeding via a de novo 
synthesis of poly(A)+RNA and is not due to the 
translation of existing transcripts or the mobilization 
of existing enzyme pools. In addition, the results 
suggest that it is not only the up-regulation of anti- 
oxidant activity that bestows a degree of tolerance to 
environmental stress, but also the speed with which 
this response occurs. 

Keywords: a-Amanitin, salt stress, oxidative stress, cotton, 
antioxidant enzymes, transcription 

I N T R O D U C T I O N  

Env i ronmen ta l  stress of ten results  in oxidat ive  
d a m a g e }  1-1°1 and  plants  w i th  h igh  levels of  anti- 

oxidants ,  e i ther  const i tu t ive  or  i nduced ,  have  been  

r epor t ed  to have  greater  res is tance to oxidat ive  
damage .  11"3-6"11"121 While  the m e c h a n i s m  wh ich  

impar t s  salt tolerance to n o n - h a l o p h y t i c  p lants  

* Corresponding author. 
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430 A.M. MANCHANDIA et al. 

has not been completely defined, an up-regula- 
tion of antioxidant enzyme activity appears to be 
part of the cascade of events that result in 
the adaptation to high saline levels. In previous 
studies with cotton, leaves from an NaCl-tolerant 
cultivar contained significantly higher NaC1- 
induced levels of general peroxidase (PER) and 
glutathione reductase (GR) than did leaves from 
a more NaCl-sensitive cultivar, [131 and callus 
tissue from the NaCl-tolerant cultivar I14[ as well 
as from a salt-tolerant cell line [lsl showed sig- 
nificant increases above control values in super- 
oxide dismutase (SOD), catalase (CAT), ascorbate 
peroxidase (APX), PER, glutathione S-transferase 
(GST) and GR activities when subjected to NaC1 
stress. Olmos et al. [16] noted the induction of 
several antioxidant enzymes in a salt-tolerant 
cell line of Pisum sativum, and Hernandez 
et al. t17"181 demonstrated that salt treatments 
decrease Mn-SOD activity in mitochondria iso- 
lated from salt-sensitive peas but induce this 
isozyme's activity in NaCl-tolerant plants. Lopez 
et al. D9] reported that APX activity increased in 
salt-stressed Raphanus sativus. 

Very little information is available on the bio- 
chemical process responsible for the NaC1- 
induced up-regulation of antioxidant activity. 
Even though Lopez et al. [19] measured an increase 
in APX activity, but not mRNA level, in salt- 
stressed radish plants, we have generally as- 
sumed that the increased antioxidant activity in 
salt-stressed cotton callus tissue was due to an 
increase in the transcription of the genes encod- 
ing these enzymes. The presentresearch is an effort 
to test this hypothesis by using the fungal toxin, 
a-amanitin, a specific inhibitor of poly (A) + 
RNA synthesis, a-Amanitin is an octapeptide 
[cyclic(L-asparaginyl-4-hydroxy-L-propyl-(R)- 
4,5-dihydroxy-L-isoleucyl-6-hydroxy-2-mercap- 
to-L-tryptophylglycyl-L-isoleucylglycyl-L-cys- 
teinyl) cyclic (4-8)-sulphide-(R)-S-oxide] which 
occurs in the Death Cap fungus, Amanita phal- 
loides. ]2°I The effects of this toxin on transcription 
have been well characterized in vitro, [21"221 R N A  

polymerase I synthesizes the 18S and 28S rRNAs; 

however, this enzyme is not inhibited by a- 
amanitin at any concentration tested. RNA poly- 
merase III, which synthesizes tRNA and 5S rRNA, 
is inhibited by a-amanitin concentrations of 1000- 
10,000ngmL -1. However, RNA polymerase II, 
which synthesizes poly (A) + RNAs, is inhibited 
by a-amanitin at concentrations between 100 and 
1000 ng mL -1. The mechanism of inhibition is also 
known, a-Amanitin binds to RNA polymerase II 
in such a way as to prevent the elongation step of 
transcription. [231 In view of these findings, it is 
possible to specifically inhibit the transcription of 
any genes that might be up-regulated during 
NaC1 stress by using a-amanitin at a concentra- 
tion of 100 ng mL -1. 

M E T H O D S  A N D  MATERIALS 

Plant Tissue Callus tissue for the cotton cultivar 
Coker 312 was generated according to the 
method of Trolinder and Goodin. I241 A NaC1- 
tolerant Coker 312 cell line acclimated to grow 
on media containing 150mM NaC1 was devel- 
oped according to the method outlined by 
Gossett et al. [151 

Chemicals and Reagents All chemicals were 
reagent grade and purchased from Sigma 
Chemical Company (St. Louis, MO). All experi- 
ments were conducted in sterile liquid media 
consisting of MS salts ~25~ supplemented with 
Gamborg's vitamins, [261 0.75 mgL -1 MgC12, and 
30gL -1 glucose adjusted to a pH of 5.8. [241 

Media for the NaCl-tolerant callus tissue also 
contained 150mM NaC1. A stock c~-amanitin 
solution at a concentration of I m g  mL -1 was pre- 
pared in DMSO and filter sterilized through a 
0.2 ~tm Acrodisk filter. A 2.5 pL aliquit of the ~- 
amanitin stock solution was added to 25 mL of 
media to give final concentration of 100 ng mL -1. 
A stock solution of NaC1 was prepared at a 
concentration of 2.51 M and sterilized with an 
autoclave. One mL of this stock solution was 
added to 24 mL of the media containing 150 mM 
NaC1 to give a final concentration of 250mM 
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c~-AMANITIN AND UP-REGULATION OF ANTIOXIDANT ENZYMES 431 

NaC1, and 0.75mL of this stock solution was 
added to 24.25 mL of the control media to give a 
final concentration of 75 mM NaC1. 

Experimental Procedure At the beginning of 
each experiment, approximately 4g of callus 
tissue from the NaCl-tolerant cell line was 
transferred to each of either a series of culture 
tubes containing 24 mL of media amended with 
150 mM NaCI (salt-tolerant control) or a series of 
culture tubes amended with 150mM NaCI+ 
100ngmL 1 c~-amanitin. Each culture tube was 
then connected to an aerator and allowed to pre- 
incubate for 2 h. Following pre-incubation, the 
tubes containing 150 mM NaCI or the tubes con- 
taining 150 mM NaC1 + 100 ng mL --1 c~-amanitin 
were amended with NaC1 to a final concentra- 
tion of 250mM NaCI. In a parallel series of 
experiments, callus tissue from a control cell line 
was transferred to each of either a series of 
culture tubes containing 24.25mL of media 
amended with 0mM NaC1 (salt-sensitive con- 
trol) or a series of culture tubes amended with 
0 mM NaC1 + 100 ng mL -1 c~-amanitin. Each cul- 
ture tube was then connected to an aerator and 
allowed to pre-incubate for 2 h. Following pre- 
incubation, the tubes containing 0mM NaC1 or 
the tubes containing 0mM NaCI + 100ngmL 1 
c~-amanitin were adjusted to a final concentra- 
tion of 75 mM NaC1. In both experiments, the 
callus tissue was harvested at 30 min, 1, 2, 4, and 
8 h intervals and stored at -70°C for subsequent 
antioxidant analyses. Caution: c~-Amanitin is a 
highly toxic compound that requires special 
handling. Suitable protective clothing, gloves, 
and eye/face protection should be worn, and 
aqueous solution should be treated with an 
equal volume of 5M NaOH for 30min before 
disposal. 

Protein Extraction Samples were prepared for 
APX, CAT, GR, PER, and SOD analyses by the 
method outlined by Anderson et al. |271 as  modi- 
fied by Gossett et al. [141 

Enzyme Assays CAT activity was deter- 
mined by monitoring the disappearance of H202 
according to the method of Beers and Sizer. ~281 

Total SOD activity was measured by determin- 
ing the amount of enzyme required to produce 
50% inhibition of the reduction of cytochrome C 
by superoxide generated by xanthine oxidase 
as outlined by Forman and Fridovich. E291 GR 
activity was determined by monitoring the 
glutathione-dependent oxidation of NADPH as 
described by Schaedle and Bassham. I3°l PER 
activity was measured by monitoring the H202- 
dependent oxidation of reduced 2,3',6-trichloro- 
indophenol according to the method of Nickel 
and Cunningham. I31! APX activity was assayed 
by monitoring the ascorbic acid-dependent re- 
duction of H 2 0 2  as described by Anderson 
et al. [271 For CAT, PER, and APX, one unit of 
enzyme was defined as the amount necessary to 
decompose 1 i~mol of substrate/min at 25°C. 
One unit of GR was defined as the amount of 
enzyme required to reduce 1 nmol of substrate/ 
min at 25°C. One unit of SOD was defined as 
the amount of enzyme necessary to inhibit the 
reduction of cytochrome C by 50%. Data points 
are based on a mean of a minimum of three 
replicates. All data were subjected to one way 
analysis of variance, and significance was deter- 
mined at the 99% confidence limits. 

RESULTS 

Enzyme activities for the control callus are 
presented in Figures 1-5. APX (Figure 1) doubled 
within 8 h after treatment with NaCl. With the 
75 mM NaC1 treatment, CAT activity (Figure 2) 
showed a significant 2-fold increase within 8 h, 
and within the same time period, a 5-fotd increase 
above control levels in SOD activity (Figure 3) was 
observed. GR activity (Figure 4) increased almost 
3-fold above control level within 4 h when treated 
with 75 mM NaC1 and returned to control level 
within 8h. NaCI treatment failed to induce a 
significant increase in PER (Figure 5) activity 
within 8h. Treatment with c~-amanitin alone 
did not change the activity of any of the enzymes. 
Pre-treatment with c~-amanitin prior to the NaCl 
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3500  
--0"- 0 Control 
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FIGURE 1 APX activity (units/g fresh weight ± SE) in NaCI- 
sensitive cotton callus tissue harvested 0, 0.5, 1, 2, 4, and 
8 h after being subjected to the following treatments: (a) 0 mM 
NaC1 (0 control); (b) 100ngmL -1 a-amanitin (0 control+ 
amanitin); (c) 75mM NaC1 (75mM NaCI); or (d) a 2h 
pre-treatment with 100ngmL -~ a-amanitin followed by 
treatment with 75 mM NaC1 (75 mM NaCI + amanitin). 
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FIGURE 3 SOD activity (units/g fresh weight + SE) in NaC1- 
sensitive cotton callus tissue harvested 0, 0.5, 1, 2, 4, and 
8h after being subjected to the following treatments: (a) 0raM 
NaC1 (0 control); (b) 100ngmL -1 c~-amanifin (0 control+ 
amanitin); (c) 75mM NaC1 (75raM NaCI); or (d) a 2h 
pre-treatment with 100ngmL -1 a-amanitin followed by 
treatment with 75 mM NaC1 (75 mM NaCl + arnanitin). 
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FIGURE 2 Catalase activity (units/g fresh weight :E SE) in 
NaCl-sensitive cotton callus tissue harvested 0, 0.5,1, 2, 4, and 
8 h after being subjected to the following treatments: (a) 0 mM 
NaCI (0 control); (b) 100ngmL -1 e-amanitin (0 control+ 
amanitin); (c) 75raM NaCI (75raM NaC1); or ( d ) a  2h 
pre-treatment with 100ngmL -1 c~-amanitin followed by 
treatment with 75 mM NaC1 (75 mM NaC1 + amanitin). 
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FIGURE 4 GR activity (units/g fresh weight ± SE) in NaC1- 
sensitive cotton callus tissue harvested 0, 0.5, 1, 2, 4, and 8 h 
after being subjected to the following treatments: (a) 0 mM 
NaC1 (0 control); (b) 100ngmL -1 c~-amanitin (0 control+ 
amanitin); (c) 75raM NaCI (75mM NaCl); or (d) a 2h 
pre-treatment with 100ngmL 1 c~-amanitin followed by 
treatment with 75 mM NaC1 (75 mM NaC1 + amanitin). 

t r e a t m e n t  c o m p l e t e l y  i n h i b i t e d  t h e  N a C l - i n d u c e d  

i n c r e a s e  in  A P X ,  CAT,  S O D ,  a n d  G R  ac t i v i t i e s .  

In  t h e  N a C l - a c c l i m a t e d  c a l l u s  t i s sue ,  t h e  a d d i -  

t i o n  of  NaC1  to  a f ina l  c o n c e n t r a t i o n  of  250 m M  

r e s u l t e d  in  s i g n i f i c a n t  i n c r e a s e s  a b o v e  c o n t r o l  

v a l u e s  fo r  a l l  f i v e  e n z y m e s  ( F i g u r e s  6 -10) ,  a n d  

t h e s e  i n c r e a s e s  o c c u r r e d  m u c h  e a r l i e r  t h a n  in  t h e  

c o n t r o l  c a l l u s  t i s sue .  T r e a t m e n t  w i t h  2 5 0 m M  
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FIGURE 5 
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Peroxidase activity (units/g fresh weight ± SE) in 
NaCl-sensitive cotton callus tissue harvested 0, 0.5,1, 2, 4, and 
8 h after being subjected to the following treatments: (a) 0 mM 
NaCI (0 control); (b) 100ngmL -1 a-amanitin (0 control+ 
amanitin); (c) 75 mM NaC1 (75 mM NaCI); or (d) a 2 h pre- 
treatment with 100ngmL -~ a-amanitin followed by treat- 
ment with 75 mM NaC1 (75 mM NaC1 ÷ amanitin). 

60 

~ 50 

,~ 40 

30 

;> 
=o 20 
< 

'~ 10 

0 

150 Control 
150 Control + amanitin 

]--~k--250 mM NaCI . 

0 1 2 3 4 5 6 7 8 
Time (hrs) 

FIGURE 7 Catalase activity (units/g fresh weight + SE) in 
NaCl-tolerant cotton callus tissue harvested 0, 0.5, 1, 2, 4, and 
8 h after being subjected to t he followin~g treatments: (a) 150 mM 
NaCI (150 control); (b) 100ngmL-  cz-amanitin (150 con- 
trol+ amanitin); (c) 250raM NaCI (250raM NaCI); or (d) a 
2h pre-treatment with 100ngmL -1 a-amanitin followed by 
treatment with 250 mM NaCI (250 mM NaCI + amanitin). 
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FIGURE 6 APX activity (units/g fresh weight ± SE) in NaC1- 
tolerant cotton callus tissue harvested 0, 0.5, 1, 2, 4, and 8 h 
after being subjected to the following treatments: (a) 150 mM 
NaC1 (150 controL); (b) 100ngmL -1 a-amanitin (150 
control + amanitin); (c) 250 mM NaC1 (250 mM NaC1); or (d) 
a 2h  pre~treatment with 100ngmL -1 a-amanitin followed 
by treatment with 250 mM NaC1 (250 mM NaC1 + amanitin). 

NaC1 resulted in a 4-fold increase above control 
levels in APX activity (Figure 6) within 30 min and 
this activity returned to control levels within 2 h. 
CAT activity (Figure 7) exhibited a 2-fold increase 
above control level within I h and returned to the 
control level within 2h when the tissue was 
treated with the high NaC1 concentration. The 
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FIGURE 8 SOD activity (units/g fresh weight 4- SE) in NaCI- 
tolerant cotton callus tissue harvested 0, 0.5, 1, 2, 4, and 8 h 
after being subjected to the following treatments: (a) 150 mM 
NaC1 (150 control); (b) 100ngrnL -1 a-amanitin (150 
control + amanitin); (c) 250 mM NaC1 (250 mM NaCI); or (d) a 
2h  pre-treatment with 100ngmL i a-amanitin followed by 
treatment with 250 mM NaCI (250 mM NaC1 + amanitin). 

250mM NaCI treatment resulted in a 4-fold 
increase above control levels in SOD activity 
(Figure 8) within 4 h. Within 8 h, SOD activity 
had decreased to about one-half of the value 
observed at 4h, but the activity continued to 
remain significantly higher than the control level. 
GR activity (Figure 9) also increased significantly 
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434 A.M. MANCHANDIA et al. 

above control values within I h after treatment 
with 250 mM NaC1. Within 4 h, GR activity was 
approximately 3.5 times that observed in the 
control callus, and within 8 h, GR activity had 
returned to the pre-treatment values. A 2-fold 
increase above the control level in PER activity 
(Figure 10) was also observed within I h after 

1800 
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+150 Control +amanitJn 
--~-'- 250 mM NaCI 
.-'e- 250 mM NaCI + amandin 

i i i i i i i 

1 2 3 4 5 6 7 
Time(~s) 

FIGURE 9 GR activity (un~its/g fresh weight +SE) in NaCI- 
tolerant cotton callus tissue harvested 0, 0.5, 1, 2, 4, and 8 h 
after being subjected to the following treatments: (a) 150 mM 
NaC1 (150 control); (b) 100ngmL -~ a-amanitin (150 
control + amanitin); (c) 250 mM NaCI (250 mM NaCI); or (d) a 
2 h  pre-treatment with 100ng mL -1 cr-amanitin followed by 
treatment with 250 mM NaC1 (250 mM NaCI + amanitin). 
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FIGURE 10 Peroxidase activity (units/g fresh weight ! SE) 
in NaCl-tolerant cotton callus tissue harvested 0, 0.5,1, 2, 4, and 
8 h  after being subjected to the following treatments: (a) 
150mM NaC1 (150 control), (b) 100ngmL -1 a-amanitin 
(150 control + amanitin); (c) 250 mM NaC1 (250 mM NaCI); or 
(d) a 2 h pre-treatment with 100 ng mL -1 a-amanitin followed 
by treatment with 250 mM NaC1 (250 mM NaCI + amanitin). 

treatment with the high NaCI concentration. PER 
activity returned to the control level within 4 h 
after treatment. As with the control callus tissue, 
treatment with a-amanitin by itself did not 
change the activity of any of the enzymes, and 
pre-treatment with a-amanitin prior to the NaCI 
treatment completely inhibited the NaCl-induced 
increase in the activities of all five enzymes. 

DISCUSSION 

In each case, significant increases in enzyme 
activity were observed within 1-4h in the 
NaCl-tolerant callus tissue where at least 4-8 h 
were required for increases to occur in the control 
tissue. The process associated with this more 
rapid increase is unknown, but it appears that 
the NaCl-acclimated tissue has developed a 
mechanism whereby it can recognize the onset 
of oxidative stress much earlier than the control 
callus, up-regulate its antioxidant defense system 
more rapidly once the stress had been perceived, 
or a combination of both. Numerous studies have 
shown that the tolerance to environmentally 
induced oxidative stress is correlated with the 
up-regulation of antioxidant enzyme activity, 
but very few of these studies have utilized short- 
term (0-8 h) time-course experiments to compare 
the stress-induced antioxidant response in toler- 
ant versus non-tolerant plants. The results from 
our studies suggest that it is not only the up- 
regulation of antioxidant activity that bestows 
a degree of tolerance to environmental stress, but 
also the speed in which this response occurs. 

While NaC1 stress resulted in an increase in all 
five of the enzymes in the NaCl-tolerant callus 
and four of the enzymes in the control callus, there 
were differences in the degree of response and 
time for induction among the different enzymes. 
The degree of the response ranged from a 2-fold 
increase in the activities of CAT, SOD, and PER to 
4-fold increases for APX and GR. The time ranged 
from as little as 0.5 min for APX in the NaC1- 
tolerant callus to 8 h for APX, CAT, and SOD in the 
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a-AMANITIN AND UP-REGULATION OF ANTIOXIDANT ENZYMES 435 

control callus. Similar results have been reported 
in Arabidopsis [32"33[ and tobacco. [341 These studies 

showed that oxidative stress genes were variable 
in both their level of response and time of 
induction after treatment with different stress- 
inducing agents. The significance of this spatial 
difference in the up-regulation in antioxidant 
enzyme activity is currently unresolved, but 
in previous studies with cotton leaves and 
callus tissue, [13'141 it was suggested that the more 
NaCl-tolerant cultivars had a higher capacity to 
decompose H202 and a more active ascorbate- 
glutathione cycle. Hence, it may be more than 
coincidence that the activities of two of the 
enzymes which decompose H202 (CAT and 
PER) and two of the enzymes associated with 
the ascorbate-glutathione cycle (APX and GR) 
were up-regulated significantly earlier in the 
NaCl-tolerant callus tissue. 

The NaCl-induced increases in antioxidant 
enzyme activity were also transient. Except for 
SOD, the activities of all of the enzymes returned 
to the pre-treatment level within 8 h in the NaC1- 
tolerant callus. In time-course experiments where 
enzyme activities were monitored in callus tissue 
subjected to NaCI stress for longer periods of 
time (data not shown), neither SOD activity in the 
NaCl-tolerant callus nor the activity of any of 
the enzymes in the control callus tissue were 
significantly different from the pre-treatment 
values after 16h. The transient nature of the 
antioxidant response has been observed in other 
studies. Richards et al. [33] have shown that the 
excess AI induced transient transcripts of several 
oxidative stress genes over an 8h period in 
Arabidopsis. The fact that APX, CAT, GR, and 
PER activities increased significantly within I h 
and returned to pre-treatment levels within 8 h in 
the NaCl-tolerant callus suggest that oxidative 
stress and the antioxidant response to that stress 
occurs very early after exposure to excessive 
levels of NaC1. Perhaps Na +, CI-, or the combi- 
nation of Na + and C1- ions immediately disrupt 
electron flow resulting in the rapid formation of 
reactive oxygen species. On the other hand, callus 

tissue may respond to NaC1 stress via the rapid 
production of reactive oxygen species through 
a respiratory burst as has been observed in other 
plants in the defense against fungal infec- 
tion. [35'36] In either case, a rapid increase in 
antioxidant activity would be necessary for 
tolerance to the stress. It may well be the rapid 
up-regulation of the antioxidant enzymes in the 
NaCl-tolerant callus tissue provides the initial 
defense against cellular damage from the oxida- 
tive burst that results from the perceived stress. 
By the time the tissue has acclimated to the 
oxidative burst, other adaptive mechanisms such 
as the accumulation of proline I371 or other low 
molecular weight organic compounds I3sl that 
may serve as osmoprotectants [39"4°1 have been 
invoked, and antioxidant enzymes activities 
return to more normal levels. 

The results of this study show that a-amanitin 
inhibits the salt-induced increase in the activities 
of all the antioxidant enzymes studied in cotton 
callus tissue. The in vivo effects of a-amanitin on 
RNA synthesis have been demonstrated in cot- 
ton [21] and other higher plants. [41-431 a-Amanitin 

at concentrations of 0.10-1.0 ~g mL -1 specifically 
inhibited poly(A)+RNA synthesis when added 
to germinating wheat embryos, whereas higher 
concentrations of 10-100 ~tg mL -1 were required 
to inhibit 5S rRNA and tRNA synthesis. I411 On the 
other hand, the addition of a-amanitin to germi- 
nating wheat embryos did not inhibit protein 
synthesis or polysome formation, [441 nor was 
in vitro translation of mRNA inhibited by 
a-amanitin in a wheat germ cell-free translation 
system, i4s] Transcription was blocked within 
15min after addition of a-amanitin in carrot 
suspension cultures. [42] a-Amanitin at concentra- 
tions of 0.05-5.0 ~tg mL -1 blocked transcription of 
RNA associated with fiber development in ovule 
culture. [2tl This information supports the con- 
clusion that the salt-induced up-regulation of 
antioxidant enzyme activity in cotton callus tissue 
is transcriptionally regulated, proceeding via a 
de novo synthesis of poly(A)+RNA and is not due 
to the translation of existing transcripts or the 
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mobil izat ion of existing enzym e  pools. This 
conclusion is in agreement  wi th  other stress- 

related studies. An increase in the t ranscript ion 
of genes invo lved  in the synthesis of phytoa-  
lexins, lignins, chitins, and  other forms  of stress 
metaboli tes  has been  reported.  I46-5°j Yamaguchi-  

Shinozaki and  Shinozaki  tsll have  identified a cis- 

acting e lement  responsible  for the induct ion of 

an Arabidopsis gene involved in responsiveness  to 
drought ,  low- tempera ture ,  and  NaC1 stress. In 
addit ion,  it has been  shown  that cytosolic and 
chloroplastic Cu, Zn  SOD transcripts increase 
w h e n  tomatoes  are mechanical ly  w o u n d e d  or 
treated wi th  sublethal  doses  of pa raqua t  which 
produces  large quanti t ies of superoxide,  t52"531 and  

Scandalios f541 has  shown  that the catalase CAT1 
m R N A  levels increase substantial ly in the pre-  
sence of abscisic acid. It has been suggested that  

ABA m a y  confer a degree  of tolerance to environ-  
menta l  stress, I551 and  an  increase in ABA in 

vegeta t ive  t issues is often associated with  in- 
creases in s t ress- induced gene expression. L561 

It has been demons t r a t ed  that ABA levels increase 
dur ing  salt s t ressf  57"581 ABA has been  shown  to 

posit ively enhance  the catalase Cat1 t ranscript  
in maize,  ~91 and  Galvez  et al. I60] have  shown  that  

ABA is the likely inducer  for the increased 
transcript ion of e leven m R N A s  associated wi th  
the synthesis of ear ly salt-stress induced  proteins 
in Lophopyrum elongatum. 

In conclusion, the results f rom this s tudy  

p rov ide  the basis for the construct ion of a possible 
scenario of events  that occur w h e n  cotton callus 
tissue is subjected to NaC1 stress. H igh  NaC1 
concentrat ions results in the immed ia t e  p roduc-  
t ion of reactive oxygen  species either through the 
d is rupt ion  of electron flow or a respira tory burst.  

In the NaCl- tolerant  callus tissue, some  signal 

t ransduct ion molecule,  pe rhaps  O2", ABA, or 
some  other  current ly  undef ined  metaboli te ,  
rap id ly  induces  the transcript ion of genes which 
encode for ant ioxidant  enzymes.  The increase in 
ant ioxidant  e n z y m e  activity provides  protect ion 
against  oxidat ive d a m a g e  to cellular componen t s  
until  other acclimation mechan i sms  such as the 

increased produc t ion  of osmopro tec tan t s  can be 
activated. Once acclimation is achieved,  anti- 

oxidant  activity returns to pre-stress levels. The 
more  NaCl-sensi t ive tissue lacks the ability to 
rapidly  mobi l ize  its ant ioxidant  defense  system. 

Addi t ional  research, part icularly in the area of 
signal t ransduct ion,  is necessary to ver ify this 
scenario. 
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